Your Search Results

      • Meteorology & climatology
        December 2013

        Abrupt Impacts of Climate Change

        Anticipating Surprises

        by Committee on Understanding and Monitoring Abrupt Climate Change and Its Impacts; Board on Atmospheric Sciences and Climate; Division on Earth and Life Studies; National Research Council

        Climate is changing, forced out of the range of the past million years by levels of carbon dioxide and other greenhouse gases not seen in the Earth's atmosphere for a very, very long time. Lacking action by the world's nations, it is clear that the planet will be warmer, sea level will rise, and patterns of rainfall will change. But the future is also partly uncertain -- there is considerable uncertainty about how we will arrive at that different climate. Will the changes be gradual, allowing natural systems and societal infrastructure to adjust in a timely fashion? Or will some of the changes be more abrupt, crossing some threshold or "tipping point" to change so fast that the time between when a problem is recognized and when action is required shrinks to the point where orderly adaptation is not possible? Abrupt Impacts of Climate Change is an updated look at the issue of abrupt climate change and its potential impacts. This study differs from previous treatments of abrupt changes by focusing on abrupt climate changes and also abrupt climate impacts that have the potential to severely affect the physical climate system, natural systems, or human systems, often affecting multiple interconnected areas of concern. The primary timescale of concern is years to decades. A key characteristic of these changes is that they can come faster than expected, planned, or budgeted for, forcing more reactive, rather than proactive, modes of behavior. Abrupt Impacts of Climate Change summarizes the state of our knowledge about potential abrupt changes and abrupt climate impacts and categorizes changes that are already occurring, have a high probability of occurrence, or are unlikely to occur. Because of the substantial risks to society and nature posed by abrupt changes, this report recommends the development of an Abrupt Change Early Warning System that would allow for the prediction and possible mitigation of such changes before their societal impacts are severe. Identifying key vulnerabilities can help guide efforts to increase resiliency and avoid large damages from abrupt change in the climate system, or in abrupt impacts of gradual changes in the climate system, and facilitate more informed decisions on the proper balance between mitigation and adaptation. Although there is still much to learn about abrupt climate change and abrupt climate impacts, to willfully ignore the threat of abrupt change could lead to more costs, loss of life, suffering, and environmental degradation. Abrupt Impacts of Climate Change makes the case that the time is here to be serious about the threat of tipping points so as to better anticipate and prepare ourselves for the inevitable surprises.

      • Meteorology & climatology
        June 2015

        Climate Intervention

        Carbon Dioxide Removal and Reliable Sequestration

        by Committee on Geoengineering Climate: Technical Evaluation and Discussion of Impacts; Board on Atmospheric Sciences and Climate; Ocean Studies Board; Division on Earth and Life Studies; National Research Council

        The signals are everywhere that our planet is experiencing significant climate change. It is clear that we need to reduce the emissions of carbon dioxide and other greenhouse gases from our atmosphere if we want to avoid greatly increased risk of damage from climate change. Aggressively pursuing a program of emissions abatement or mitigation will show results over a timescale of many decades. How do we actively remove carbon dioxide from the atmosphere to make a bigger difference more quickly? As one of a two-book report, this volume of Climate Intervention discusses CDR, the carbon dioxide removal of greenhouse gas emissions from the atmosphere and sequestration of it in perpetuity. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration introduces possible CDR approaches and then discusses them in depth. Land management practices, such as low-till agriculture, reforestation and afforestation, ocean iron fertilization, and land-and-ocean-based accelerated weathering, could amplify the rates of processes that are already occurring as part of the natural carbon cycle. Other CDR approaches, such as bioenergy with carbon capture and sequestration, direct air capture and sequestration, and traditional carbon capture and sequestration, seek to capture CO2 from the atmosphere and dispose of it by pumping it underground at high pressure. This book looks at the pros and cons of these options and estimates possible rates of removal and total amounts that might be removed via these methods. With whatever portfolio of technologies the transition is achieved, eliminating the carbon dioxide emissions from the global energy and transportation systems will pose an enormous technical, economic, and social challenge that will likely take decades of concerted effort to achieve. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration will help to better understand the potential cost and performance of CDR strategies to inform debate and decision making as we work to stabilize and reduce atmospheric concentrations of carbon dioxide.

      • Meteorology & climatology
        June 2015

        Climate Intervention

        Reflecting Sunlight to Cool Earth

        by Committee on Geoengineering Climate: Technical Evaluation and Discussion of Impacts; Board on Atmospheric Sciences and Climate; Ocean Studies Board; Division on Earth and Life Studies; National Research Council

        The growing problem of changing environmental conditions caused by climate destabilization is well recognized as one of the defining issues of our time. The root problem is greenhouse gas emissions, and the fundamental solution is curbing those emissions. Climate geoengineering has often been considered to be a "last-ditch" response to climate change, to be used only if climate change damage should produce extreme hardship. Although the likelihood of eventually needing to resort to these efforts grows with every year of inaction on emissions control, there is a lack of information on these ways of potentially intervening in the climate system. As one of a two-book report, this volume of Climate Intervention discusses albedo modification - changing the fraction of incoming solar radiation that reaches the surface. This approach would deliberately modify the energy budget of Earth to produce a cooling designed to compensate for some of the effects of warming associated with greenhouse gas increases. The prospect of large-scale albedo modification raises political and governance issues at national and global levels, as well as ethical concerns. Climate Intervention: Reflecting Sunlight to Cool Earth discusses some of the social, political, and legal issues surrounding these proposed techniques. It is far easier to modify Earth's albedo than to determine whether it should be done or what the consequences might be of such an action. One serious concern is that such an action could be unilaterally undertaken by a small nation or smaller entity for its own benefit without international sanction and regardless of international consequences. Transparency in discussing this subject is critical. In the spirit of that transparency, Climate Intervention: Reflecting Sunlight to Cool Earth was based on peer-reviewed literature and the judgments of the authoring committee; no new research was done as part of this study and all data and information used are from entirely open sources. By helping to bring light to this topic area, this book will help leaders to be far more knowledgeable about the consequences of albedo modification approaches before they face a decision whether or not to use them.

      • Meteorology & climatology
        February 1989

        Opportunities to Improve Marine Forecasting

        by Committee on Opportunities to Improve Marine Observations and Forecasting, Marine Board, National Research Council

        Commerce and the general public--especially those living in increasingly crowded, highly developed low-lying coastal communities--rely heavily on accurate forecasts of marine conditions and weather over the oceans to ensure the safe and productive use of the sea and coastal zone. This book examines the opportunities to improve our ocean forecasting systems made possible by new observational techniques and high-speed computers. Significant benefits from these potential improvements are possible for transportation, ocean energy and resources development, fisheries and recreation, and coastal management.

      • Meteorology & climatology
        February 1992

        Coastal Meteorology

        A Review of the State of the Science

        by Panel on Coastal Meteorology, Committee on Meteorological Analysis, Prediction, and Research, Board on Atmospheric Sciences and Climate, Commission on Geosciences, Environment, and Resources, National Research Council

        Almost half the U.S. population lives along the coast. In another 20 years this population is expected to more than double in size. The unique weather and climate of the coastal zone, circulating pollutants, altering storms, changing temperature, and moving coastal currents affect air pollution and disaster preparedness, ocean pollution, and safeguarding near-shore ecosystems. Activities in commerce, industry, transportation, freshwater supply, safety, recreation, and national defense also are affected. The research community engaged in studies of coastal meteorology in recent years has made significant advancements in describing and prediciting atmospheric properties along coasts. Coastal Meteorology reviews this progess and recommends research that would increase the value and application of what is known today.

      • Meteorology & climatology
        May 1995

        Airborne Geophysics and Precise Positioning

        Scientific Issues and Future Directions

        by Committee on Geodesy, National Research Council

        The Global Positioning System, with its capability for both precisely positioning and navigating an aircraft, has created new scientific opportunities for studying the earth. This book examines the state of the art in airborne geophysics as integrated with new precise positioning systems, and it outlines the scientific goals of focused effort in airborne geophysics, including advances in our understanding of solid earth processes, global climate change, the environment, and resources.

      • Meteorology & climatology
        January 1994

        GOALS (Global Ocean-Atmosphere-Land System) for Predicting Seasonal-to-Interannual Climate

        A Program of Observation, Modeling, and Analysis

        by Climate Research Committee, National Research Council

        This book lays out a science plan for a major, international, 15-year research program. The past 10 years have seen significant progress in studies of short-term climate variations, in particular for the region of the tropical Pacific Ocean and the El Nino/Southern Oscillation phenomenon. Some forecast skill with lead times as long as a year in advance has already been developed and put to use. The GOALS program plans to capitalize on this progress by expanding efforts on observations and seasonal-to-interannual predictions to the remainder of the tropics and to higher latitudes.

      • Meteorology & climatology
        December 1996

        Learning to Predict Climate Variations Associated with El Nino and the Southern Oscillation

        Accomplishments and Legacies of the TOGA Program

        by Advisory Panel for the Tropical Oceans and Global Atmosphere Program (TOGA Panel), National Research Council

        The TOGA (Tropical Ocean and Global Atmosphere) Program was designed to study short-term climate variations. A 10-year international program, TOGA made El Nino a household word. This book chronicles the cooperative efforts of oceanographers and meteorologists, several U.S. government agencies, many other nations, and international scientific organizations to study El Nino and the Southern Oscillation (ENSO). It describes the progression from being unable to detect the development of large climate variations to being able to make and use rudimentary climate predictions, especially for some tropical countries. It examines the development of the TOGA Program, evaluates its accomplishments, describes U.S. participation in the program, and makes general recommendations for developing better understanding and predictions of climate variations on seasonal to interannual time scales.

      • Meteorology & climatology
        November 1995

        Aviation Weather Services

        A Call For Federal Leadership and Action

        by National Aviation Weather Services Committee, National Research Council

        Each time we see grim pictures of aircraft wreckage on a rain-drenched crash site, or scenes of tired holiday travelers stranded in snow-covered airports, we are reminded of the harsh impact that weather can have on the flying public. This book examines issues that affect the provision of national aviation weather services and related research and technology development efforts. It also discusses fragmentation of responsibilities and resources, which leads to a less-than-optimal use of available weather information and examines alternatives for responding to this situation. In particular, it develops an approach whereby the federal government could provide stronger leadership to improve cooperation and coordination among aviation weather providers and users.

      • Meteorology & climatology
        November 2010

        When Weather Matters

        Science and Service to Meet Critical Societal Needs

        by Committee on Progress and Priorities of U.S. Weather Research and Research-to-Operations Activities; National Research Council

        The past 15 years have seen marked progress in observing, understanding, and predicting weather. At the same time, the United States has failed to match or surpass progress in operational numerical weather prediction achieved by other nations and failed to realize its prediction potential; as a result, the nation is not mitigating weather impacts to the extent possible. This book represents a sense of the weather community as guided by the discussions of a Board on Atmospheric Sciences and Climate community workshop held in summer 2009. The book puts forth the committee's judgment on the most pressing high level, weather-focused research challenges and research to operations needs, and makes corresponding recommendations. The book addresses issues including observations, global non-hydrostatic coupled modeling, data assimilation, probabilistic forecasting, and quantitative precipitation and hydrologic forecasting. The book also identifies three important, emerging issues--predictions of very high impact weather, urban meteorology, and renewable energy development--not recognized or emphasized in previous studies. Cutting across all of these challenges is a set of socioeconomic issues, whose importance and emphasis--while increasing--has been undervalued and underemphasized in the past and warrants greater recognition and priority today.

      • Meteorology & climatology
        August 2011

        Understanding Earth's Deep Past

        Lessons for Our Climate Future

        by Committee on the Importance of Deep-Time Geologic Records for Understanding Climate Change Impacts; National Research Council of the National Academies

        There is little dispute within the scientific community that humans are changing Earth's climate on a decadal to century time-scale. By the end of this century, without a reduction in emissions, atmospheric CO2 is projected to increase to levels that Earth has not experienced for more than 30 million years. As greenhouse gas emissions propel Earth toward a warmer climate state, an improved understanding of climate dynamics in warm environments is needed to inform public policy decisions. In Understanding Earth's Deep Past, the National Research Council reports that rocks and sediments that are millions of years old hold clues to how the Earth's future climate would respond in an environment with high levels of atmospheric greenhouse gases. Understanding Earth's Deep Past provides an assessment of both the demonstrated and underdeveloped potential of the deep-time geologic record to inform us about the dynamics of the global climate system. The report describes past climate changes, and discusses potential impacts of high levels of atmospheric greenhouse gases on regional climates, water resources, marine and terrestrial ecosystems, and the cycling of life-sustaining elements. While revealing gaps in scientific knowledge of past climate states, the report highlights a range of high priority research issues with potential for major advances in the scientific understanding of climate processes. This proposed integrated, deep-time climate research program would study how climate responded over Earth's different climate states, examine how climate responds to increased atmospheric carbon dioxide and other greenhouse gases, and clarify the processes that lead to anomalously warm polar and tropical regions and the impact on marine and terrestrial life. In addition to outlining a research agenda, Understanding Earth's Deep Past proposes an implementation strategy that will be an invaluable resource to decision-makers in the field, as well as the research community, advocacy organizations, government agencies, and college professors and students.

      • Meteorology & climatology
        September 2016

        Attribution of Extreme Weather Events in the Context of Climate Change

        by Committee on Extreme Weather Events and Climate Change Attribution; Board on Atmospheric Sciences and Climate; Division on Earth and Life Studies; National Academies of Sciences, Engineering, and Medicine

        As climate has warmed over recent years, a new pattern of more frequent and more intense weather events has unfolded across the globe. Climate models simulate such changes in extreme events, and some of the reasons for the changes are well understood. Warming increases the likelihood of extremely hot days and nights, favors increased atmospheric moisture that may result in more frequent heavy rainfall and snowfall, and leads to evaporation that can exacerbate droughts. Even with evidence of these broad trends, scientists cautioned in the past that individual weather events couldn't be attributed to climate change. Now, with advances in understanding the climate science behind extreme events and the science of extreme event attribution, such blanket statements may not be accurate. The relatively young science of extreme event attribution seeks to tease out the influence of human-cause climate change from other factors, such as natural sources of variability like El Niño, as contributors to individual extreme events. Event attribution can answer questions about how much climate change influenced the probability or intensity of a specific type of weather event. As event attribution capabilities improve, they could help inform choices about assessing and managing risk, and in guiding climate adaptation strategies. This report examines the current state of science of extreme weather attribution, and identifies ways to move the science forward to improve attribution capabilities.

      • Meteorology & climatology
        August 2000

        From Research to Operations in Weather Satellites and Numerical Weather Prediction

        Crossing the Valley of Death

        by Board on Atmospheric Sciences and Climate, National Research Council

        This workshop report examines the capability of the forecast system to efficiently transfer weather and climate research findings into improved operational forecast capabilities. It looks in particular at the Environmental Modeling Center of the National Weather Service and environmental observational satellite programs. Using these examples, the report identifies several shortcomings in the capability to transition from research to operations. Successful transitions from R&D to operational implementation requires (1) understanding of the importance (and risks) of the transition, (2) development and maintenance of appropriate transition plans, (3) adequate resource provision, and (4) continuous feedback (in both directions) between the R&D and operational activities.

      • Meteorology & climatology
        September 2000

        Issues in the Integration of Research and Operational Satellite Systems for Climate Research

        Part I. Science and Design

        by Committee on Earth Studies, Space Studies Board, National Research Council

        Currently, the Departments of Defense (DOD) and Commerce (DOC) acquire and operate separate polarorbiting environmental satellite systems that collect data needed for military and civil weather forecasting. The National Performance Review (NPR) and subsequent Presidential Decision Directive (PDD), directed the DOD (Air Force) and the DOC (National Oceanic and Atmospheric Administration, NOAA) to establish a converged national weather satellite program that would meet U.S. civil and national security requirements and fulfill international obligations. NASA's Earth Observing System (EOS), and potentially other NASA programs, were included in the converged program to provide new remote sensing and spacecraft technologies that could improve the operational capabilities of the converged system. The program that followed, called the National Polar-orbiting Operational Environmental Satellite System (NPOESS), combined the follow-on to the DOD's Defense Meteorological Satellite Program and the DOC's Polar-orbiting Operational Environmental Satellite (POES) program. The tri-agency Integrated Program Office (IPO) for NPOESS was subsequently established to manage the acquisition and operations of the converged satellite. Issues in the Integration of Research and Operational Satellite Systems for Climate Research analyzes issues related to the integration of EOS and NPOESS, especially as they affect research and monitoring activities related to Earth's climate and whether it is changing.

      • Meteorology & climatology
        January 2000

        Issues in the Integration of Research and Operational Satellite Systems for Climate Research

        Part II. Implementation

        by Committee on Earth Studies, Space Studies Board, National Research Council

        This is the second of two Space Studies Board reports that address the complex issue of incorporating the needs of climate research into the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS, which has been driven by the imperative of reliably providing short-term weather information, is itself a union of heretofore separate civilian and military programs. It is a marriage of convenience to eliminate needless duplication and reduce cost, one that appears to be working. The same considerations of expediency and economy motivate the present attempts to add to NPOESS the goals of climate research. The technical complexities of combining seemingly disparate requirements are accompanied by the programmatic complexities of forging further connections among three different agencies, with different mandates, cultures, and congressional appropriators. Yet the stakes are very high, and each agency gains significantly by finding ways to cooperate, as do the taxpayers. Beyond cost savings, benefits include the possibility that long-term climate observations will reveal new phenomena of interest to weather forecasters, as happened with the El Niño/Southern Oscillation. Conversely, climate researchers can often make good use of operational data. Necessity is the mother of invention, and the needs of all the parties involved in NPOESS should conspire to foster creative solutions to make this effort work. Although it has often been said that research and operational requirements are incommensurate, this report and the phase one report (Science and Design) accentuate the degree to which they are complementary and could be made compatible. The reports provide guidelines for achieving the desired integration to the mutual benefit of all parties. Although a significant level of commitment will be needed to surmount the very real technical and programmatic impediments, the public interest would be well served by a positive outcome.

      • Meteorology & climatology
        May 2001

        Under the Weather

        Climate, Ecosystems, and Infectious Disease

        by Committee on Climate, Ecosystems, Infectious Diseases, and Human Health, Board on Atmospheric Sciences and Climate, National Research Council

        Since the dawn of medical science, people have recognized connections between a change in the weather and the appearance of epidemic disease. With today's technology, some hope that it will be possible to build models for predicting the emergence and spread of many infectious diseases based on climate and weather forecasts. However, separating the effects of climate from other effects presents a tremendous scientific challenge. Can we use climate and weather forecasts to predict infectious disease outbreaks? Can the field of public health advance from "surveillance and response" to "prediction and prevention?" And perhaps the most important question of all: Can we predict how global warming will affect the emergence and transmission of infectious disease agents around the world? Under the Weather evaluates our current understanding of the linkages among climate, ecosystems, and infectious disease; it then goes a step further and outlines the research needed to improve our understanding of these linkages. The book also examines the potential for using climate forecasts and ecological observations to help predict infectious disease outbreaks, identifies the necessary components for an epidemic early warning system, and reviews lessons learned from the use of climate forecasts in other realms of human activity.

      • Meteorology & climatology
        April 2001

        Improving the Effectiveness of U.S. Climate Modeling

        by Panel on Improving the Effectiveness of U.S. Climate Modeling, Commission on Geosciences, Environment and Resources, National Research Council

        Information derived from climate modeling has become increasingly important in recent years. More and more we understand that climate variability and change impacts society and that dealing with climate-related disasters, conflicts, and opportunities requires the best possible information about the past, present, and future of the climate system. To this end, Improving the Effectiveness of U.S. Climate Modeling describes ways to improve the efficacy of the U.S. climate modeling enterprise, given the current needs and resources. It discusses enhanced and stable resources for modeling activities, focused and centralized operational activities, how to give researchers access to the best computing facilities, the creation of a common modeling and data infrastructure, and research studies on the socioeconomic aspects of climate and climate modeling.

      • Meteorology & climatology
        December 2006

        Surface Temperature Reconstructions for the Last 2,000 Years

        by Committee on Surface Temperature Reconstructions for the Last 2,000 Years, National Research Council

        In response to a request from Congress, Surface Temperature Reconstructions for the Last 2,000 Years assesses the state of scientific efforts to reconstruct surface temperature records for Earth during approximately the last 2,000 years and the implications of these efforts for our understanding of global climate change. Because widespread, reliable temperature records are available only for the last 150 years, scientists estimate temperatures in the more distant past by analyzing "proxy evidence," which includes tree rings, corals, ocean and lake sediments, cave deposits, ice cores, boreholes, and glaciers. Starting in the late 1990s, scientists began using sophisticated methods to combine proxy evidence from many different locations in an effort to estimate surface temperature changes during the last few hundred to few thousand years. This book is an important resource in helping to understand the intricacies of global climate change.

      • Meteorology & climatology
        October 2006

        Completing the Forecast

        Characterizing and Communicating Uncertainty for Better Decisions Using Weather and Climate Forecasts

        by Committee on Estimating and Communicating Uncertainty in Weather and Climate Forecasts, National Research Council

        Uncertainty is a fundamental characteristic of weather, seasonal climate, and hydrological prediction, and no forecast is complete without a description of its uncertainty. Effective communication of uncertainty helps people better understand the likelihood of a particular event and improves their ability to make decisions based on the forecast. Nonetheless, for decades, users of these forecasts have been conditioned to receive incomplete information about uncertainty. They have become used to single-valued (deterministic) forecasts (e.g., "the high temperature will be 70 degrees Farenheit 9 days from now") and applied their own experience in determining how much confidence to place in the forecast. Most forecast products from the public and private sectors, including those from the National Oceanographic and Atmospheric Administration’s National Weather Service, continue this deterministic legacy. Fortunately, the National Weather Service and others in the prediction community have recognized the need to view uncertainty as a fundamental part of forecasts. By partnering with other segments of the community to understand user needs, generate relevant and rich informational products, and utilize effective communication vehicles, the National Weather Service can take a leading role in the transition to widespread, effective incorporation of uncertainty information into predictions. "Completing the Forecast" makes recommendations to the National Weather Service and the broader prediction community on how to make this transition.

      • Meteorology & climatology
        October 2007

        Earth Science and Applications from Space

        National Imperatives for the Next Decade and Beyond

        by Committee on Earth Science and Applications from Space: A Community Assessment and Strategy for the Future, National Research Council

        Natural and human-induced changes in Earth's interior, land surface, biosphere, atmosphere, and oceans affect all aspects of life. Understanding these changes requires a range of observations acquired from land-, sea-, air-, and space-based platforms. To assist NASA, NOAA, and USGS in developing these tools, the NRC was asked to carry out a "decadal strategy" survey of Earth science and applications from space that would develop the key scientific questions on which to focus Earth and environmental observations in the period 2005-2015 and beyond, and present a prioritized list of space programs, missions, and supporting activities to address these questions. This report presents a vision for the Earth science program; an analysis of the existing Earth Observing System and recommendations to help restore its capabilities; an assessment of and recommendations for new observations and missions for the next decade; an examination of and recommendations for effective application of those observations; and an analysis of how best to sustain that observation and applications system.

      Subscribe to our

      newsletter