# Matrix Analysis for Statistics

##### by James R. Schott

# Description

**An up-to-date version of the complete, self-contained introduction to matrix analysis theory and practice**

Providing accessible and in-depth coverage of the most common matrix methods now used in statistical applications, *Matrix Analysis for Statistics, Third Edition *features an easy-to-follow theorem/proof format. Featuring smooth transitions between topical coverage, the author carefully justifies the step-by-step process of the most common matrix methods now used in statistical applications, including eigenvalues and eigenvectors; the Moore-Penrose inverse; matrix differentiation; and the distribution of quadratic forms.

An ideal introduction to matrix analysis theory and practice, *Matrix Analysis for Statistics, Third Edition *features:

• New chapter or section coverage on inequalities, oblique projections, and antieigenvalues and antieigenvectors

• Additional problems and chapter-end practice exercises at the end of each chapter

• Extensive examples that are familiar and easy to understand

• Self-contained chapters for flexibility in topic choice

• Applications of matrix methods in least squares regression and the analyses of mean vectors and covariance matrices

*Matrix Analysis for Statistics, Third Edition *is an ideal textbook for upper-undergraduate and graduate-level courses on matrix methods, multivariate analysis, and linear models. The book is also an excellent reference for research professionals in applied statistics.

**James R. Schott, PhD, **is Professor in the Department of Statistics at the University of Central Florida. He has published numerous journal articles in the area of multivariate analysis. Dr. Schott’s research interests include multivariate analysis, analysis of covariance and correlation matrices, and dimensionality reduction techniques.

## More Information

## Rights Information

WORLD

## Endorsements

**An up-to-date version of the complete, self-contained introduction to matrix analysis theory and practice**

Providing accessible and in-depth coverage of the most common matrix methods now used in statistical applications, *Matrix Analysis for Statistics, Third Edition *features an easy-to-follow theorem/proof format. Featuring smooth transitions between topical coverage, the author carefully justifies the step-by-step process of the most common matrix methods now used in statistical applications, including eigenvalues and eigenvectors; the Moore-Penrose inverse; matrix differentiation; and the distribution of quadratic forms.

An ideal introduction to matrix analysis theory and practice, *Matrix Analysis for Statistics, Third Edition *features:

• New chapter or section coverage on inequalities, oblique projections, and antieigenvalues and antieigenvectors

• Additional problems and chapter-end practice exercises at the end of each chapter

• Extensive examples that are familiar and easy to understand

• Self-contained chapters for flexibility in topic choice

• Applications of matrix methods in least squares regression and the analyses of mean vectors and covariance matrices

*Matrix Analysis for Statistics, Third Edition *is an ideal textbook for upper-undergraduate and graduate-level courses on matrix methods, multivariate analysis, and linear models. The book is also an excellent reference for research professionals in applied statistics.

**James R. Schott, PhD, **is Professor in the Department of Statistics at the University of Central Florida. He has published numerous journal articles in the area of multivariate analysis. Dr. Schott’s research interests include multivariate analysis, analysis of covariance and correlation matrices, and dimensionality reduction techniques.

## Reviews

**An up-to-date version of the complete, self-contained introduction to matrix analysis theory and practice**

Providing accessible and in-depth coverage of the most common matrix methods now used in statistical applications, *Matrix Analysis for Statistics, Third Edition *features an easy-to-follow theorem/proof format. Featuring smooth transitions between topical coverage, the author carefully justifies the step-by-step process of the most common matrix methods now used in statistical applications, including eigenvalues and eigenvectors; the Moore-Penrose inverse; matrix differentiation; and the distribution of quadratic forms.

An ideal introduction to matrix analysis theory and practice, *Matrix Analysis for Statistics, Third Edition *features:

• New chapter or section coverage on inequalities, oblique projections, and antieigenvalues and antieigenvectors

• Additional problems and chapter-end practice exercises at the end of each chapter

• Extensive examples that are familiar and easy to understand

• Self-contained chapters for flexibility in topic choice

• Applications of matrix methods in least squares regression and the analyses of mean vectors and covariance matrices

*Matrix Analysis for Statistics, Third Edition *is an ideal textbook for upper-undergraduate and graduate-level courses on matrix methods, multivariate analysis, and linear models. The book is also an excellent reference for research professionals in applied statistics.

**James R. Schott, PhD, **is Professor in the Department of Statistics at the University of Central Florida. He has published numerous journal articles in the area of multivariate analysis. Dr. Schott’s research interests include multivariate analysis, analysis of covariance and correlation matrices, and dimensionality reduction techniques.

## Wiley

John Wiley & Sons, Inc. (Wiley) is a renowned, global publishing company focusing on academic publishing for professionals and researchers within the field of science and medicine.

View all titles# Bibliographic Information

- Publisher Wiley
- Publication Date June 2016
- Orginal LanguageEnglish
- ISBN/Identifier 9781119092483
- Publication Country or regionUnited States
- Primary Price 125 USD
- ReadershipProfessional and scholarly
- Publish StatusPublished
- Dimensions241.3 X 162.6 mm
- SeriesWiley Series in Probability and Statistics
- Reference Code9781119092483

Wiley has chosen to review this offer before it proceeds.

You will receive an email update that will bring you back to complete the process.

You can also check the status in the My Offers area

Please wait while the payment is being prepared.

Do not close this window.